Formation of hydrogen peroxide and reduction of peroxynitrite via dismutation of superoxide at reperfusion enhances myocardial blood flow and oxygen consumption in postischemic mouse heart.
نویسندگان
چکیده
Reactive oxygen/nitrogen species suppress myocardial oxygen consumption. In this study, we determined that endogenous hydrogen peroxide through dismutation of superoxide enhances postischemic myocardial blood perfusion and oxygen consumption. Electron paramagnetic resonance oximetry was applied to monitor in vivo tissue Po2 in mouse heart subjected to regional ischemia reperfusion. Heart rate, arterial blood pressure, blood flow, infarction, and activities of mitochondrial NADH dehydrogenase and cytochrome c oxidase were measured in six groups of wild-type (WT) and endothelial nitricoxide synthase knock-out (eNOS(-/-)) mice treated with phosphate-buffered saline (PBS), superoxide dismutase mimetic (SOD(m)) M40403 [a manganese(II)-bis(cyclohexylpyridine)-substituted macrocyclic superoxide dismutase mimetic, C21H35Cl2MnN5], 10006329 EUK 134 [EUK134, manganese 3-methoxy N,N(1)-bis(salicyclidene)ethylenediamine chloride], and SOD(m) plus glibenclamide to study the protective effect of hydrogen peroxide via dismutation of superoxide on the activation of sarcolemmal potassium channels. In the PBS group, there was an overshoot of tissue Po2 after reperfusion. Treatment with SOD(m), EUK134, and SOD(m) + glibenclamide protected mitochondrial enzyme activities, reduced infarct size, and suppressed the postischemic hyperoxygenation. In particular, in the SOD(m)-treated group, there was a transient peak of tissue Po2 at 9 min after reperfusion, which was dependent on endogenous hydrogen peroxide but not nitric oxide formation as it appeared in both WT and eNOS(-/-) mice. Blood flow and rate pressure product were higher in the SOD(m) group than in other groups, which contributed to the transient oxygen peak. Thus, SOD mimetics protected mouse heart from superoxide-induced reperfusion injury. With treatment of different SOD mimetics, it is concluded that endogenous hydrogen peroxide via dismutation of superoxide at reperfusion enhances postischemic myocardial blood perfusion and mitochondrial oxygen consumption, possibly through activation of sarcolemmal ATP-sensitive potassium channels.
منابع مشابه
Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation.
Lucigenin-amplified chemiluminescence has frequently been used to assess the formation of superoxide in vascular tissues. However, the ability of lucigenin to undergo redox cycling in purified enzyme-substrate mixtures has raised questions concerning the use of lucigenin as an appropriate probe for the measurement of superoxide production. Addition of lucigenin to reaction mixtures of xanthine ...
متن کاملMolecular Cardiology Mitochondrial Thioredoxin Reductase Is Essential for Early Postischemic Myocardial Protection
Background—Excessive formation of reactive oxygen species contributes to tissue injury and functional deterioration after myocardial ischemia/reperfusion. Especially, mitochondrial reactive oxygen species are capable of opening the mitochondrial permeability transition pore, a harmful event in cardiac ischemia/reperfusion. Thioredoxins are key players in the cardiac defense against oxidative st...
متن کاملPeroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK) cells☆
Superoxide is widely regarded as the primary reactive oxygen species (ROS) which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD) catalyzes the dismutation of superoxide into hydrogen peroxide whic...
متن کاملEffect of endogenous nitric oxide on cardiac ischemic preconditioning in rat
Introduction: Ischemic Preconditioning (IPC) is the phenomen that happens on the heart by one or several short periods of ischemia followed by reperfusion that improve the postischemic recovery of mechanical function. Ischemic preconditioning (IPC) may protect the heart from ischemia reperfusion injury by nitric oxide formation. This study investigated the effect of ischemic preconditioni...
متن کاملEndothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport.
BACKGROUND Nitric oxide (NO) production is increased in postischemic myocardium, and NO can control mitochondrial oxygen consumption in vitro. Therefore, we investigated the role of endothelial NO synthase (eNOS)-derived NO on in vivo regulation of oxygen consumption in the postischemic heart. METHODS AND RESULTS Mice were subjected to 30 minutes of coronary ligation followed by 60 minutes of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 327 2 شماره
صفحات -
تاریخ انتشار 2008